If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+16x-35=0
a = 12; b = 16; c = -35;
Δ = b2-4ac
Δ = 162-4·12·(-35)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-44}{2*12}=\frac{-60}{24} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+44}{2*12}=\frac{28}{24} =1+1/6 $
| 25x=24x+40 | | 3y-54=3y-6 | | (11x-18)=4x+18 | | 5/6=u+5 | | -16t2+22t+20=0 | | 6(-3y)=48 | | 25X=230+15x | | 4x2-2x+8=0 | | 5x3^5x-1=160 | | -9(6=d)=45 | | 6x2-17x-2=0 | | x=8+5x=44 | | 2x+3.8=x+4.8 | | 7x-31÷2x+22=3 | | n^2-2n+192=0 | | v+2.36=6.45 | | -6x2+1x+7=0 | | b-38=-71 | | x-10=2x-15 | | 1/10=x/10 | | 3x^2+160=0 | | 11/10=x/10 | | 3p^2+160=0 | | (6x-6)+(2x+17)+(3x+15)=0 | | 39x+0.2=95 | | 2(x+5)=5+2x+12 | | Q=36-0.5p | | 7x+1+7x=15 | | (4x+2)+(6x-8)=84 | | 20÷x=5.71428571429 | | 39x+.20=95 | | Q(x)=x^2−10x+26 |